Code No: 155BK

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, January/February - 2023 FORMAL LANGUAGES AND AUTOMATA THEORY (Common to CSE, IT, ECM, ITE, CSE(CS))

Time: 3 Hours

Max. Marks: 75

(25 Marks)

R18

Note: i) Question paper consists of Part A, Part B.

- ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
- iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART – A

		,
1.a)	What is a string? Write about concatenation of two strings.	[2]
b)	What is a Regular expression in the theory of Automata?	[3]
c)	Eliminate Useless symbols from the given grammar	
	$A \rightarrow xyz \mid Xyzz \mid X \rightarrow Xz \mid xYz \mid Y \rightarrow yYy \mid Xz Z \rightarrow Zy \mid z \qquad \checkmark$	[2]
d)	Write the design strategy for NFA-ε.	[3]
e)	Write any two properties of Regular languages.	[2]
f)	Write about Leftmost derivation and rightmost derivation with example.	[3]
g)	Define GNF.	[2]
h)	Write the advantages of parse tree in identifying ambiguity.	[3]
i)	What do you mean by Instantaneous Description of Turing Machine?	[2]
j)	What is offline Turing Machine?	[3]
	PART – B	
	1024 (5	50 Marks)
2		
2.a)	Define Finite Automaton. Explain about the model of Finite Automaton.	[6 6]
b)	Convert the regular expression $(((00)*(11)) + 01)*$ into an NFA.	[5+5]
a)	OR	
3.a)	Describe in brief about applications of Finite Automata.	
b)	Design a mealy machine to print out 1's complement of an input bit string.	[5+5]
4.a)	Write the steps to construct regular expression from given DFA.	
b)	Construct a NFA equivalent to the regular expression $10(0+11)0*1$.	[5+5]
	OR	
5.a)	Write in brief about the algebraic rules for regular expressions.	
b)	Discuss in brief about applications of pumping lemma.	[5+5]
6.a)	Define Push Down Automata. Explain the basic structure of PDA with a neat	graphical
,	representation.	
b)	Construct a PDA that accepts $L = \{0^n \ 1^n \mid n \ge 0\}.$	[5+5]
	OR	
7.a)	Construct a PDA which accepts language of word over alphabet $\{a,b\}$ canting $\{a^i b^j c^k / i, j, k \in \mathbb{N}, i+k=j\}$.	
b)	Define Context Free Grammar. State and explain the closure properties of CFG	G. [5+5]

Download all NOTES and PAPERS at StudentSuvidha.com

- 8.a) Obtain Griebech Normal Form (GNF) for: $S \rightarrow AB$, $A \rightarrow BS/b$, $B \rightarrow SA/a$.
- b) Define Ambiguous Grammar? Check whether the grammar
 S→aAB,A→bC/cd,C→cd,B→c/d
 Is Ambiguous or not? [5+5]

OR

- 9.a) Construct a Left most Derivation for the string 0011000 using the grammar $S \rightarrow A0S/0/SS$, $A \rightarrow S1A/10$?
 - b) Discuss in brief about decision properties of Context free languages. [5+5]
- 10.a) Construct Turing machine for the languages containing the set of all strings of balanced paranthesis
 - b) Design Turing machine and its transition diagram to accept the language: [5+5]L = {a ⁿ bⁿ | n >=1}

OR

- 11.a) Define LR(0) Grammar. Explain in detail about Post Correspondence Problem.
 - b) What is decidability? Explain in brief about any two undecidable problems. [5+5]